Exercise 5

In Exercises 5-8, show that the given function $u(x)$ is a solution of the corresponding Volterra integral equation:

$$
u(x)=1+\frac{1}{2} \int_{0}^{x} u(t) d t, u(x)=e^{2 x}
$$

[TYPO: The $1 / 2$ should be a 2.]

Solution

Substitute the function in question on both sides of the integral equation.

$$
e^{2 x} \stackrel{?}{=} 1+2 \int_{0}^{x} e^{2 t} d t
$$

Evaluate the integral.

$$
\begin{aligned}
e^{2 x} & \stackrel{?}{=} 1+\left.2 \cdot \frac{1}{2} e^{2 t}\right|_{0} ^{x} \\
& \stackrel{?}{=} 1+\left(e^{2 x}-e^{0}\right) \\
& =e^{2 x}
\end{aligned}
$$

Therefore,

$$
u(x)=e^{2 x}
$$

is a solution of the Volterra integral equation.

